1,132 research outputs found

    Assessment of ground-based monitoring techniques applied to landslide investigations

    Get PDF
    A landslide complex in the Whitby Mudstone Formation at Hollin Hill, North Yorkshire, UK is periodically re-activated in response to rainfall-induced pore-water pressure fluctuations. This paper compares long-term measurements (i.e., 2009–2014) obtained from a combination of monitoring techniques that have been employed together for the first time on an active landslide. The results highlight the relative performance of the different techniques, and can provide guidance for researchers and practitioners for selecting and installing appropriate monitoring techniques to assess unstable slopes. Particular attention is given to the spatial and temporal resolutions offered by the different approaches that include: Real Time Kinematic-GPS (RTK-GPS) monitoring of a ground surface marker array, conventional inclinometers, Shape Acceleration Arrays (SAA), tilt meters, active waveguides with Acoustic Emission (AE) monitoring, and piezometers. High spatial resolution information has allowed locating areas of stability and instability across a large slope. This has enabled identification of areas where further monitoring efforts should be focused. High temporal resolution information allowed the capture of ‘S’-shaped slope displacement-time behaviour (i.e. phases of slope acceleration, deceleration and stability) in response to elevations in pore-water pressures. This study shows that a well-balanced suite of monitoring techniques that provides high temporal and spatial resolutions on both measurement and slope scale is necessary to fully understand failure and movement mechanisms of slopes. In the case of the Hollin Hill landslide it enabled detailed interpretation of the geomorphological processes governing landslide activity. It highlights the benefit of regularly surveying a network of GPS markers to determine areas for installation of movement monitoring techniques that offer higher resolution both temporally and spatially. The small sensitivity of tilt meter measurements to translational movements limited the ability to record characteristic ‘S’-shaped landslide movements at Hollin Hill, which were identified using SAA and AE measurements. This high sensitivity to landslide movements indicates the applicability of SAA and AE monitoring to be used in early warning systems, through detecting and quantifying accelerations of slope movement

    The Copernicus surface velocity platform drifter with barometer and reference sensor for temperature (SVP-BRST): genesis, design, and initial results

    Get PDF
    To support calibration and validation of satel- lite sea surface temperature (SST) retrievals, over 60 high- resolution SST (HRSST) drifting buoys were deployed at sea between 2012 and 2017. Their data record is reviewed here. It is confirmed that sea state and immersion depth play an important role in understanding the data collected by such buoys and that the SST sensors need adequate insu- lation. In addition, calibration verification of three recovered drifters suggests that the sensor drift is low, albeit negative at around −0.01 K year−1. However, the statistical significance of these results is limited, and the calibration procedure could not be exactly reproduced, introducing additional uncertain- ties into this drift assessment. Based on lessons learnt from these initial buoys, a new sensor package for the Surface Velocity Platform with Barometer (SVP-B) was designed to serve calibration of SST retrievals by European Union’s Copernicus satellites. The novel sensor package includes an HRSST sensor calibrated by a metrology laboratory. The sensor includes a pressure probe to monitor immersion depth in calm water and acquires SST data at 1 Hz over a 5 min in- terval every hour. This enables the derivation of mean SST as well as several percentiles of the SST distribution. The HRSST sensor is calibrated with an uncertainty better than 0.01 K. Analysis of the data collected by two prototypes de- ployed in the Mediterranean Sea shows that the buoys are able to capture small-scale SST variations. These variations are found to be smaller when the sea state is well mixed and when the buoys are located within eddy cores. This affects the drifter SST data representativeness, which is an aspect of importance for optimal use of these data

    Effects of hydrogen in the annealing environment on photoluminescence from Si nanoparticles in SiO2

    Full text link
    The role of hydrogen in enhancing the photoluminescence (PL) yield observed from Si nanocrystals embedded in SiO{sub 2} has been studied. SiO{sub 2} thermal oxides and bulk fused silica samples have been implanted with Si and subsequently annealed in various ambients including hydrogen or deuterium forming gases (Ar+4%H{sub 2} or Ar+4%D{sub 2}) or pure Ar. Results are presented for annealing at temperatures between 200 and 1100 C. Depth and concentration profiles of H and D at various stages of processing have been measured using elastic recoil detection. Hydrogen or deuterium is observed in the bulk after annealing in forming gas but not after high temperature (1100 C) anneals in Ar. The presence of hydrogen dramatically increases the broad PL band centered in the near-infrared after annealing at 1100 C but has almost no effect on the PL spectral distribution. Hydrogen is found to selectively trap in the region where Si nanocrystals are formed, consistent with a model of H passivating surface states at the Si/SiO{sub 2} interface that leads to enhanced PL. The thermal stability of the trapped H and the PL yield observed after a high temperature anneal have been studied. The hydrogen concentration and PL yield are unchanged for subsequent anneals up to 400 C. However, above 400 C the PL decreases and a more complicated H chemistry is evident. Similar concentrations of H or D are trapped after annealing in H{sub 2} or D{sub 2} forming gas; however, no differences in the PL yield or spectral distribution are observed, indicating that the electronic transitions resulting in luminescence are not dependent on the mass of the hydrogen species

    Thermocapillary actuation of liquid flow on chemically patterned surfaces

    Get PDF
    We have investigated the thermocapillary flow of a Newtonian liquid on hydrophilic microstripes which are lithographically defined on a hydrophobic surface. The speed of the microstreams is studied as a function of the stripe width w, the applied thermal gradient |dT/dx| and the liquid volume V deposited on a connecting reservoir pad. Numerical solutions of the flow speed as a function of downstream position show excellent agreement with experiment. The only adjustable parameter is the inlet film height, which is controlled by the ratio of the reservoir pressure to the shear stress applied to the liquid stream. In the limiting cases where this ratio is either much smaller or much larger than unity, the rivulet speed shows a power law dependency on w, |dT/dx| and V. In this study we demonstrate that thermocapillary driven flow on chemically patterned surfaces can provide an elegant and tunable method for the transport of ultrasmall liquid volumes in emerging microfluidic technologies

    Origin of Shifts in the Surface Plasmon Resonance Frequencies for Au and Ag Nanoparticles

    Full text link
    Origin of shifts in the surface plasmon resonance (SPR) frequency for noble metal (Au, Ag) nanoclusters are discussed in this book chapter. Spill out of electron from the Fermi surface is considered as the origin of red shift. On the other hand, both screening of electrons of the noble metal in porous media and quantum effect of screen surface electron are considered for the observed blue shift in the SPR peak position.Comment: 37 pages, 14 Figures in the submitted book chapter of The Annual Reviews in Plasmonics, edited by Professor Chris D. Geddes. Springer Scinec

    Crystallization by particle attachment in synthetic, biogenic, and geologic environments.

    Get PDF
    Field and laboratory observations show that crystals commonly form by the addition and attachment of particles that range from multi-ion complexes to fully formed nanoparticles. The particles involved in these nonclassical pathways to crystallization are diverse, in contrast to classical models that consider only the addition of monomeric chemical species. We review progress toward understanding crystal growth by particle-attachment processes and show that multiple pathways result from the interplay of free-energy landscapes and reaction dynamics. Much remains unknown about the fundamental aspects, particularly the relationships between solution structure, interfacial forces, and particle motion. Developing a predictive description that connects molecular details to ensemble behavior will require revisiting long-standing interpretations of crystal formation in synthetic systems, biominerals, and patterns of mineralization in natural environments

    Babesia microti, Upstate New York

    Get PDF
    Five cases of human babesiosis were reported in the Lower Hudson Valley Region of New York State in 2001. An investigation to determine if Babesia microti was present in local Ixodes scapularis ticks yielded 5 positive pools in 123 pools tested, the first detection of B. microti from field-collected I. scapularis in upstate New York

    Self-assembly of amorphous calcium carbonate microlens arrays

    Get PDF
    Biological materials are often based on simple constituents and grown by the principle of self-assembly under ambient conditions. In particular, biomineralization approaches exploit efficient pathways of inorganic material synthesis. There is still a large gap between the complexity of natural systems and the practical utilization of bioinspired formation mechanisms. Here we describe a simple self-assembly route leading to a CaCO3 microlens array, somewhat reminiscent of the brittlestars' microlenses, with uniform size and focal length, by using a minimum number of components and equipment at ambient conditions. The formation mechanism of the amorphous CaCO3 microlens arrays was elucidated by confocal Raman spectroscopic imaging to be a two-step growth process mediated by the organic surfactant. CaCO3 microlens arrays are easy to fabricate, biocompatible and functional in amorphous or more stable crystalline forms. This shows that advanced optical materials can be generated by a simple mineral precipitation
    • …
    corecore